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Abstract

Many infectious disease models build upon the classical Susceptible-Infected-Recovered (SIR)

model. The SIR model is a compartmental model that is used to model disease transmission

throughout a population. The SIR model and its variations often focus on the transmission

of disease but rarely include behavioral or informational components that explore how the

perception of a disease influences transmission. In this thesis we propose a six compartment

SIR model that segments the classical SIR model based on knowledge of information to

explore the sharing of information and its ability to increase and decrease transmission. We

designate these two model states as aware and unaware based on whether the information is

known by the population. We find that while good behavior is useful in decreasing community

transmission, bad behavior is significantly more damaging for the community in terms of

disease transmission. These preliminary results suggest that more research is needed on the

effect of information and behavior on disease transmission.

vi



Chapter 1

Mathematical models of disease

“All models are wrong, but some are useful”

George E. P. Box, British statistician (1919-2013)

Mathematical models provide quantitative solutions to real-world problems. Examples

range from determining the growth rate of a cell culture to predicting changes in stock price.

Models range in complexity from simple algebraic equations to complex systems of ordinary

differential equations (ODEs), and models are used to predict or forecast outcomes under a

certain set of assumptions and conditions.

In this thesis, we focus on the mathematical modeling of infectious disease in humans.

These diseases are caused by infectious agents including viruses, bacteria, and protozoa.

Often we model the spread or transmission of diseases from human to human hosts, and

sometimes models will incorporate secondary animal hosts. In this thesis, we model human

to human transmission.

Recently the relevance of mathematical modeling research has increased due to the on-

going COVID-19 pandemic. This resurgence has brought to light the importance and limi-

tations of such models. In forecasting the possible spread of disease, we are able to predict

1



MATHEMATICAL MODELS OF DISEASE 2

hot-spot locations for the disease, transmission rates, and effective prevention and protection

measures. However, for each of these predictions, the model assumptions must be analyzed.

All mathematical models of disease use assumptions to decrease computational load and

reduce scenario complexity. For example, a model with few assumptions will quickly grow

in complexity as more scenario factors are taken into account. Conversely, a model that

makes too many assumptions might fail to describe the scenario, leaving out key ideas that

influence the model’s behavior. It is for these reasons that it is important that we thor-

oughly analyze and question our assumptions when creating our model. By adjusting and

simplifying our models using appropriate assumptions, we can reduce computation time and

make our models more accessible for a variety of disciplines.

1.1 The SIR Model

The Susceptible-Infected-Recovered (SIR) compartmental model is one of the most common

models used to describe the transmission of a disease within a population. Originally created

by Kermack and McKendrick of the Royal College of Physicians in Edinburgh, UK in 1927,

the SIR model can be most simply described by the compartmental model shown in Figure

1.1 [1]. The susceptible (S ) compartment represents individuals in a population who are

susceptible to disease infection but are not currently infectious or infected. The infected (I )

compartment represents individuals in the population who both carry the disease and can

spread it to susceptible individuals. Finally, recovered (R) individuals have surpassed the

infectious stage of the disease and no longer can transmit the disease. Individuals in the

population will move from the S class to the I and finally the R as the disease progresses.

In this SIR compartmental model, people in the susceptible compartment move at rate

β to the infected compartment. Thus we can think of β as the infection rate of our disease.

Likewise, the recovery rate α describes the rate at which individuals recover from the disease

and are no longer infectious. As with all models, several simplifying assumptions are made.
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Figure 1.1: SIR Compartmental Model
Individuals become infected at rate β and recover at rate α.

These assumptions include:

1. Population size N is constant. There are no births or deaths.

2. After someone recovers from the disease, they are considered immune to the disease.

3. The incubation period of the disease is short enough to be ignored. The incubation

period is defined as the period in which an individual is infected but not infectious;

during this time the individual might or might not be aware they are infected.

4. The SIR compartments are uniformly mixed to ensure equal risk of catching the disease.

5. Healthy individuals in the susceptible compartment get sick at a rate proportional

to the product of S and I. This follows from the assumption that the population is

uniformly mixed to ensure an equal risk of getting the disease.

The simple SIR compartmental model can be transformed into a series of ODEs to

describe the rate of change of each compartment. The ODE is given by System of Equations

1.1 and describes the movement of individuals from one compartment to another. The SIR

model as described in System of Equations 1.1 has two parameters α and β. In the model,

β has units of one over time per individual and α has units of one over time.
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dS

dt
= −βSI

dI

dt
= βSI − αI

dR

dt
= αI

(1.1)

N(t) = S(t) + I(t) +R(t) (1.2)

In the SIR model our total population size is denoted by N . Note from assumption 1,

N is a constant. To show that N is constant, we will show that dN
dt

= 0. First, recall that

the equation for N is described in Equation 1.2. Taking the derivative of Equation 1.2 and

applying the derivatives of S, I, and R from System 1.1 we find

dN

dt
=

dS

dt
+

dI

dt
+

dR

dt
dN

dt
= −βSI + βSI − αI + αI

dN

dt
= 0

Since population size is a non-negative variable, the initial conditions for our model are

S(0) = S0 > 0, I(0) = I0 > 0, and R(0) = 0. That is the number of susceptible and infected

individuals are greater than 0, while the initial number of recovered individuals is 0. A key

value we determine from our system of equations is R0, “R-Naught”, the basic reproductive

rate of infection. R0 is defined as the number of secondary infections resulting from a single

initial infection in a population where S(0) = N−1 and I(0) = 1. Typically, R0 describes the

infectiousness of a disease, it is defined as R0 =
βS0

α
. If R0 > 1, each infectious individual on

average will infect more than one other individual. Previous studies on infectious diseases

have shown that R0 often varies from disease to disease. For example, the calculated R0

for the 1918 influenza was between 2 and 3 [2]. Utilizing systems of equations to describe
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the transmission of a disease throughout a population, we can determine if there will be an

epidemic, how many people an infected individual will infect, and various parameter tests

that alter the values of α and β.

1.2 Example SIR Model, Eyam Second Wave

As describe previously, we can apply System of Equations 1.1 to real-world scenarios. A

noted example of an SIR model is G. F. Raggett’s 1921 Eyam second wave model [3]. Eyam,

England located in the Sheffield region is also where Raggett hails from. Raggett’s work

was later expanded on by D. Sulsky who graphed his proposed system of equations and

parameters, exploring the similarities between the real world data and the SIR model’s

predictions. Sulsky’s work will be discussed later in this thesis.

Eyam’s plague epidemic began in 1665 with a package containing a damp cloth from

London that was delivered to Eyam’s tailor. The cloths were opened and laid out to dry

by the tailor’s assistant. It is believed that the cloth contained fleas or eggs which were

infected with the bubonic plague. A few days after the cloth had been delivered, the tailor’s

assistant was dead. What followed was one of the most deadly plague outbreaks in European

history. In the small village of approximately 350 residents, by the end of the epidemic only

83 villagers were still alive. However, the death toll could have been much higher had the

village rector, William Mompesson, not made the decision to cease all travel to and from

Eyam to protect the surrounding villages. In the summer months, after the initial wave

of the plague, Rector Momepesson gathered all of Eyam’s remaining residents to propose

a self-imposed village-wide quarantine. Encouraged by the summer weather and declining

number of plague infections, the villagers agreed. Nonetheless, in the fall the plague returned

causing a second wave of infections. This wave lasted until November of 1666 when the last

plague related death was recorded.

From Rector Mompesson’s historical records of plague related deaths, Raggett was able to
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Figure 1.2: Eyam Predictions and Historical Records
Comparison of Rector Mompesson’s historical Eyam records (solid lines) and Raggett’s SIR

model predictions (circles).

create his SIR model of the second wave of infection. These results are reproduced in Figure

1.2 using Matlab. Using these values Raggett found that at the start of the second wave of

infection there were 254 remaining uninfected villagers and 7 infected villagers. Raggett also

used these death records to estimate the average rate of infection, α = 2.82 months−1 and

death rate, β = 2.82
159

(people×months)−1.

As shown in this section, SIR models of disease can be fit to real world data providing

insight and prediction power to similar scenarios. For example, using Raggett’s β and α

parameters we could simulate the spread of the plague in a population of 1000 individuals,

999 susceptible and 1 infected. We could also manipulate β and α to fit a different disease

such as COVID-19.
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1.3 Epidemic and Pandemic Definitions

Although the term epidemic was used previously to describe the plague outbreak in Eyam,

there is no universally agreed upon quantified definition for when a disease outbreak is

classified as an epidemic. Nor is there an agreed definition for pandemic. However, pandemics

are typically classified as epidemics that span a wide area.

In this thesis, we consider an outbreak an epidemic when the infection curve has a

sustained positive slope. When dI
dt

> 0, this indicates that the number of individuals being

infected at each time step is greater than the number of individuals who recover from the

disease. Thus, we see an increase in the number of infected individuals. This increase must

be sustained for a significant duration of time, which is unique to the disease. Eventually, the

peak will plateau and decline as the number of susceptible individuals decreases. However,

until the curve begins its downward trajectory we classify the rapid increase of infected

individuals as an epidemic.

Beyond defining epidemics we can also classify them into to broad categories. In cases

where dI
dt

is large we can expect a sharp increase in the number of infected individuals.

However, large spikes in the number of infected individuals do not often lead to long-term

increases in disease transmission. Rather, spikes tend to quickly increase then decrease.

Conversely, a small dI
dt

is usually associated with a long term period of infection where only

a small proportion of the population is infected at any given point in time, but the disease

persists in the population for a significant period oftentimes. In future studies it would be

useful to explore for what values of dI
dt

a significant proportion of the is population infected

and the differences between the two behaviors described above.
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1.4 Variations on the SIR Model

The classic SIR model can be modified to add or remove assumptions. In this section we

give an overview of a few popular variations on this classic model. In particular, we examine

SIR models that remove assumptions 1-3. Note that each model we present does not build

on the previous model. Instead, we consider three separate models and the scenarios they

describe.

1.4.1 SIR with demography

Figure 1.3: Open SIR Compartmental Model
Adding births (at rate γ) and deaths (at rate δ).

dS

dt
= −βSI + γ(S + I +R)− δS

dI

dt
= βSI − αI − δI

dR

dt
= αI − δR

(1.3)

The classic SIR model is a closed model. This qualification means N is a constant,

such that there are no births or deaths within the population. Open versions of the SIR

models will account for births and deaths in the population. Adding these properties yields

the compartmental model displayed in Figure 1.2. From this model we write the equations
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described in System of Equations 1.3, where γ is the population birth rate of new susceptible

individuals and δ is the death rate from non-disease related causes. Note that it is assumed

in this model that newborns are susceptible to the disease and are therefore not born with

inherited immunity.

1.4.2 SIRS Model

Removing assumption 2, we can include waning immunity to the disease over time, as dis-

played in Figure 1.3. This model is typically referred to as the SIRS model whereby indi-

viduals transition from the recovered class back to the susceptible class as their immunity

to the disease decreases.

Figure 1.4: SIRS Compartmental Model
Including waning immunity (at rate ω) where individuals can become reinfected with the

disease.

dS

dt
= −βSI + ωR

dI

dt
= βSI − αI

dR

dt
= αI − ωR

(1.4)

ODEs derived from this compartmental model are described in System of Equations 1.4

where ω represents the rate of waning immunity of individuals in the recovered compartment.

This model is commonly used for diseases where individuals can be reinfected. Examples of
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such diseases include the seasonal influenza, STDs, and the common cold.

1.4.3 SEIR Model

Finally, we remove assumption 3, and instead consider a non-negligible incubation period

where individuals are infected but not infectious, meaning they cannot spread the disease.

This model is typically called the SEIR model where E represents the exposed class [4]. The

SEIR model gives the compartmental diagram as seen in Figure 1.4.

Figure 1.5: SEIR Compartmental Model
Adding an exposed compartment E for individuals who are not yet infectious and latency

rate σ.

dS

dt
= −βSI

dE

dt
= βSI − σE

dI

dt
= σE − αI

dR

dt
= αI

(1.5)

In this system of equations, we include dE
dt

to represent the rate of change of the exposed

class. Notice that individuals in the exposed compartment do not infect individuals in the

susceptible compartment. To become infected a susceptible individual must still contact

an infectious individual. Thus, our rate of infection is still β and the rate of individuals

becoming infectious is σ.

The classic SIR model and its variations are a frequently used template for modeling

infectious disease transmission. These models can be further modified to represent different
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conditions and assumptions. In this section, we described three common modifications that

can be applied to the classic SIR model. Moving forward we will consider the classic SIR

model in a nondimensionalized form and use behavioral epidemiology techniques to explore

the effect of human behavior and information flow on the spread of disease.

1.5 Behavioral Epidemiology

Behavioral epidemiology (BE) is the study of human behavior, its influences, and its impact

on the spread of infectious diseases. Developed in the 1970s, BE has grown as an interdis-

ciplinary field that draws from mathematics, biology, sociology, psychology, economics, and

other disciplines that study human behavior and disease [5]. In 2000, Sallis et al. published

a systematic framework describing the five major phases of BE research. The first phase

aims to find connections between human behavior and health. The next phase quantifies or

measures the behavior of interest. The third phase further explores the behavior by studying

the factors that influence it. In the fourth phase interventions that change or prevent the

behavior are studied. Finally, in the fifth phase, the four previous phases are used to inform

future practices that mitigate or prevent the behavior.

A recent example of research following the five phases proposed by Sallis et al. is the on-

going COVID-19 pandemic and problematic behaviors that increase disease transmission. In

the first phase of COVID-19 research, close contact was linked to higher rates of disease trans-

mission. Then, further research quantified the behavior, revealing that a distance of 6 feet or

fewer between two people was considered close contact. As information and misinformation

spread about COVID-19, a popular piece of misinformation was that social distancing was

ineffective in stopping the spread of COVID-19. Thus, the misinformation influenced anti-

social distancing behavior. As the pandemic continued, public health messaging was utilized

as an intervention technique, combining Sallis’ intervention and implementation phases.

While Sallis et al.’s framework continues to serve as a useful tool for describing research



MATHEMATICAL MODELS OF DISEASE 12

phases, the modern interpretation of the phrase “behavioral epidemiology” has shifted to a

more mathematical and modeling-centered perspective. Specifically, the modern interpre-

tation of BE still aims to understand the effects of determinants on human behavior, but

instead of an empirical approach, modern studies tend to use a computational approach.

Common determinants of human behavior include: the acquisition of information, risk per-

ception, benefits perception, and trustworthiness of information. Modern BE research is an

interdisciplinary study of epidemiology from a human-centered perspective grounded upon

the belief that human behavior drives the transmission of disease.

Looking further at modern BE applications, in classic SIR models and variations we

operate under the assumption that people within our population of interest behave as we

would expect, homogeneously. This means there are no outliers in terms of human behavior

and we expect even mixing of susceptible, infected, and recovered individuals. However, this

is rarely the case in real-life disease scenarios. More often than not in real-world epidemic

and pandemic scenarios, individuals will react and change their behavior based on various

influences they experience. Within the current COVID-19 pandemic we see common exam-

ples of influences of human behavior causing individuals to act in such a way that causes

both positive and negative effects on the spread of COVID-19. A positive effect increases

the spread of disease. An example of an influence leading to a positive effect includes anti-

masking and anti-vaccine information. On the other hand, a negative effect like the practice

of social distancing decreases the spread.

Funk, Gilad and Jansen use BE in disease modeling in their 2010 paper that describes

a six compartmental model whereby a population is divided into two main sub-classes,

aware and unaware [6]. These sub-classes denote whether individuals in each class know

the information. Each sub class is then further divided based on the standard SIR model.

This model is shown in Figure 1.6, which was reproduced from [6].
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Figure 1.6: Six Compartment SIR Model including Behavior
Knowledge is denoted by aware and unaware groups and information is shared across

groups (at rate λ).

The described six compartment model features one SIRS model for those who are aware

and one for those who are unaware. Awareness spreads like a disease and the transmission

of information is akin to a susceptible-infected-susceptible (SIS) model where after one be-

comes “infected,” the information fades from memory after a period of time. Because the

information that is being transmitted is undefined in its quality and truthfulness, the authors

perform multiple tests using beneficial and detrimental information. If information is useful,

disease transmission decreases within the aware population. If information is harmful, dis-

ease transmission increases amongst the aware population. Within the model, the authors

define 11 parameters shown in Figure 1.6.

Funk et al. modeled an endemic disease, a persistent disease in a population, to under-

stand the effect of information on disease transmission. Using mean-field analysis, Funk et

al. found that information changes the conditions for disease-free and endemic equilibrium.

Generally, this suggests that information can prevent disease establishment in the population.

Additionally, Funk et al. found that when information reduced the intensity of infection,

caused a shorter duration of infection, or reduced the susceptibility of non-infected individ-
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uals, it was difficult for the disease to establish itself. A combination or triad of these effects

of information made it even more difficult for the establishment of the disease. Finally, Funk

et al. found that as the disease approached equilibrium, its rate of spread decreased. This

meant that if information was able to spread thoroughly throughout the population, the size

of the disease outbreak is prominently due to the rate of disease transmission. These findings

suggest that mathematical models incorporating behavioral epidemiology are a useful tool in

understanding the complexities of disease transmission and suggest the importance of public

health messaging to curb the spread of disease.

When mathematical models of diseases fail to account for human behavior, these models

fail to fully describe the population of interest. BE has grown from a theoretical field to an

applied set of metrics that can be used to build robust mathematical models of diseases to

predict the effect of human behavior on disease transmission such as in Funk et al [6]. In

this thesis we will use the schema described by BE to inform our model creation as we aim

to understand the influence of both helpful and harmful information. Specifically, we are

inspired by the recent rise in misinformation throughout the COVID-19 pandemic and its

potential effect on disease transmission.



Chapter 2

Nondimensionalized Model

The study of dynamics analyzes systems that evolve over time. In this thesis we will use

techniques from dynamical systems to examine the evolution of a disease within a population

over time. Using the classic SIR model first proposed by Kermack and McKendrick, we

determine for what values of α and β an epidemic will occur. We first solve the SIR model,

then perform a fixed point analysis, and finally determine the threshold of an epidemic on

the nondimensionalized equation. We used a nondimensionalized form to remove units from

our equations and to simplify our analyses.

Moving forward we adopt the dot notation such that, for example Ṡ = dS
dt
. Recall, the

SIR model given by System of Equations 1.1 is:

Ṡ = −βSI

İ = βSI − αI

Ṙ = αI

15
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To start we look for solutions of the form:

S(t) = S0 · exp
−βR(t)

α
(2.1)

To find solutions of this form we take the derivative of equation 2.1, and then substitute in

for dR
dt

from System of Equations 1.1.

Ṡ = S0 · exp
−βR(t)

α
· −β

α
· Ṙ

= S(t) · −β

α
· Ṙ

= S(t) · −β

α
· αI

= S(t) · −βI

= −βSI

Using our new equation for Ṡ and the fact that N(t) = S(t) + I(t) +R(t), we can rewrite Ṙ

as

Ṙ = αI

= α[N −R− S]

= α[N −R− S0 · exp
−βR(t)

α
]

We next distribute α throughout.

dR

dt
= αN − αR− S0 · α · exp−βR(t)

α

As previously mentioned nondimensionalization involves the removal of units from our pa-

rameters and variables. Our next step is to make a change of variables, introducing a

dimensionless state variable u. Here we let
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u =
βR

α
so that R =

αu

β
and differentiating gives:

du

dt
=

β

α

dR

dt
(2.2)

Next we nondimensionalize time by introducing τ :

τ = S0βt and differentiating gives: dτ = S0βdt and dt =
dτ

S0β
(2.3)

Using these new variables u and τ and their differentials we substitute them into our

previous equation to find

α

β

du

dt
= αN − α(

αu

β
)− S0αe

−u

1

S0α
[
α

β

du

dt
= αN − α(

αu

β
)− S0 · αe−u]

1

S0β

du

dt
=

N

S0

− 1

S0

(
αu

β
)− e−u

du

dτ
=

N

S0

− αu

S0β
− e−u

Finally, we set a and b to be

a =
N

S0

b =
α

S0β

Substituting in these values results in our dimensionless equation

du

dτ
= a− bu− e−u = 0 (2.4)

We note that a ≥ 1 as there will always be more people in the population than in the

susceptible compartment since N ≥ S0 > 0. Additionally, b > 0 as we know that α, β, S0 > 0

from our model assumptions. Finally, recall that R0 =
S0β
α

and that b = 1
R0
.

From the dimensionless model Equation 2.4, we can find fixed points u⋆. Fixed points
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represent equilibrium solutions for Equation 2.4. Equilibrium solutions are points where

du
dτ

= 0. These points can either be unstable or stable depending on if a response to a small

disturbance away from u⋆ causes the solution to return to equilibrium or move away over

time. Here du
dτ

= 0 means that a− bu− e−u = 0 and that at a fixed point,

a− bu = e−u (2.5)

To find fix points, we use roots of Equation 2.4. Using this form, equilibrium solutions

can be found by setting a − bu and e−u equal to each other. This form is easy to ana-

lyze graphically and so we plot the two sides of Equation 2.5 and look for intersections.

Intersections represent points where Equation 2.4 is equal to 0.

Figure 2.1: Fixed Point Analysis of u
Where a = 1.5 and b = 1 are typical parameter values. In this scenario the fixed point

corresponds to u = 1.2.

As mentioned previously, we can analyze equation 2.5 using graphical methods. From
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Figure 2.1, we see there is one fixed point, u⋆, where a − bu and e−u intersect. Note that

a− bu and e−u intersect at another point, not shown, but because at that point u < 0, it is

not relevant to our analysis.

Thus far we have converted part of the classic SIR system of equations to a dimensionless

ODE modeling rate of change in R. Now we will use the dimensionless form to determine

for what values of b an epidemic occurs. Remember that b = 1
R0
. Given that Equation 2.4

is a rescaled version of Ṙ(t), we use du
dτ

as our new recovery rate. First, we denote tpeak as

the time of the epidemic peak, when du
dτ

is at its maximum. Let us now consider three cases:

b < 1, b > 1, and b = 1. In our first case b < 1, which means R0 > 1.

Figure 2.2: Outbreak Analysis when b < 1
du
dτ

when b = 0.7 and a = 1.5. Note that the fixed point occurs at u = 1.9.

Equation 2.4 is maximized when the distance between a− bu and e−u is the largest. As

shown in Figure 2.2 this occurs between u = 0.2 and 0.6, and then the difference decreases to

0 as u approaches u⋆. Note that u⋆ is approximately 1.9. Thus, tpeak > 0 because the distance
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between a− bu and e−u first increases then decreases. In this scenario tpeak is approximately

0.35 for the specific set of parameters used in Figure 2.2. For all scenarios where b < 1, we

observe the same pattern of the death rate increasing then decreasing to u⋆. This indicates

that the spread of disease first increases, causing an epidemic, then decreases as the number

of infected individuals decrease such that there are not enough infected individuals for the

disease to continue spreading. In essence, in this scenario things must get worse before they

can get better.

Figure 2.3: Outbreak Analysis when b > 1
du
dτ

when b = 1.5 and a = 1.5. Note that the fixed point occurs at u = 0.7.

In our second case b > 1 and R0 < 1. We find tpeak = 0 because the distance between

a− bu and e−u decreases such that the greatest distance between the two functions is when

u = 0. This can also be shown as f ′(u) < 0 so the difference will always be decreasing.

Although there is disease transmission, we would describe this scenario as a small outbreak,

not an epidemic as the disease spreads steadily but does not have an increase as in Figure
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2.2.

Finally, let us consider case three when b = 1. We return to Figure 2.1 where b = 1

so R0 = 1. We know from previous analysis that when b > 1 an epidemic will not occur

whereas for b < 1 an epidemic will occur. Because of the behavior exhibited when b is less

than or greater to 1 we consider b = 1 the threshold for an epidemic. Remember earlier

we defined b = α
S0β

= 1
R0
. When b > 1 we define this scenario as when the number of

people who are becoming infected is less than the number of individuals recovering from

the disease. It follows that an epidemic would not occur. Conversely, when b < 1 more

individuals are becoming infected than recovering, creating an epidemic. In this chapter we

have nondimensionalized our System of Equations 1.1 to perform an epidemic analysis. In

the following chapters we will present our Behavioral SIR Model and explore the effects of

human behavior on disease transmission.



Chapter 3

Behavioral SIR Model

As previously shown, mathematical models of disease rarely consider the effect of behavior

or the sharing of information. In this chapter we investigate disease and information shar-

ing. To facilitate this investigation we propose a 6 compartment mathematical model and

corresponding system of equations similar to Funk et al. in [6]. Finally, we confirm that our

proposed model allows for the use of different time scales and their corresponding parameter

values.

One’s behavior is often influenced by the nature of or context of the information they

receive, the source of the information, and their openness to accepting new information. For

example, an individual who does not believe in science will be a skeptic of any information

received from a scientific source. In the midst of a pandemic, the decision to not trust factual

public health information could lead to individuals engaging in risky behaviors. Conversely,

if someone believes in science and hears the same public health information, they might

be more likely to engage in less risky behavior. Ultimately, one’s openness to receiving

new information, regardless of its trustworthiness or legitimacy, is more indicative of their

behavior than the specifics of the message. In both scenarios the information is received but

only in the case of the individual who believes in science is any action taken. Thus, individuals

who engage in risky behaviors are more likely to have a higher disease transmission rate

22
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than those who protect themselves. When considering a mathematical model of disease,

information about behavior is an essential component to include when one considers the

volatility of human to human transmission.

3.1 The Behavioral Model of Disease

Our proposed behavioral model of disease features 6 compartments, similar to Funk et al.’s

model in [6]. As seen in Figure 3.1, the Susceptible, Infected, and Recovered compartments

are subdivided into aware (a) and unaware (u) groups depending on if the individuals within

each compartment are aware of the information.

Figure 3.1: Behavioral SIR Six Compartment Model
Knowledge is denoted by subscript u (unaware) and a (aware) with different infection rates

(βu or βa) for each group. Information is shared across groups at rate δ.

Individuals begin in either the aware or unaware group. As time progresses, individuals

spread the information and the disease. The spread of information is represented by individ-

uals moving from the unaware group to the aware group. Similarly, the spread of disease is

represented by individuals moving from the Susceptible compartment to the Infected com-

partment corresponding to their aware or unaware state. Once an individual is infected,

regardless of if they know the information or not, they progress through the I compartment
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to the R compartment as they would progress in the classic SIR model.

To differentiate the types of information, we use two infection rate parameters βa and

βu. In scenarios where knowing the information is helpful βa < βu. For example, useful

information could be recommending protective measures like social distancing, isolation, or

quarantine when an individual is infectious or a close contact of an infectious individual.

When the information being spread is harmful βa > βu. Examples of harmful information

include misinformation about the disease such as suggestions that the disease is not real or

recommendations to not follow public health measures.

Similar to the classic SIR model, in the behavioral SIR model after an individual is

infected, they recover at rate α, regardless if they know the information and if the information

is helpful or harmful. Additionally, we assume the birth and death rates are negligible.

Finally, the most important difference between our described model and the classic SIR

is the addition of an information sharing term δ. The parameter δ represents the flow of

information from the aware population to the unaware. In this model, we assume that

information can spread only between susceptible people, individuals in the Infected and

Recovered compartments are unable to share information, and individuals cannot forget the

information over time. All parameters and their meanings are shown in Table 3.1

Parameter Meaning
βu Infection rate for unaware population
βa Infection rate for aware population
α Population recovery rate
δ Information sharing rate

Table 3.1: Parameter definitions

Using the compartmental model described and shown in Figure 3.1, we write a system

of six equations describing the sharing of information and spread of disease through the

population. Notice, that Sa, Ia and Ra form a classic SIR model as do Su, Iu and Ru. The

only movement between these two models is through the addition of the term δ(SaSu).
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Ṡa = −βa(SaIa) + δ(SaSu)

İa = βa(SaIa)− αIa

Ṙa = αIa

Ṡu = −βu(SuIu)− δ(SaSu)

İu = βu(SuIu)− αIu

Ṙu = αIu

(3.1)

Like Funk et al.’s six compartment model, in System of Equations 3.1 we see that in-

formation is shared from the aware susceptible compartment to the unaware susceptible

compartment. Akin to the classic SIR model we assume a homogeneously mixed population

within the aware and unaware groups. However, this model assumes that the disease flows

within the aware and unaware groups with no disease transmission between them.

3.2 RStudio Model

To simulate epidemic scenarios using System of Equations 3.1, we use RStudio along with the

tidyverse, DescTools, and deSolve packages [7, 8, 9]. We utilize RStudio to generate plots of

the simulations over a specified length of time to investigate the effects of varying parameter

values and to determine final and maximum values for each compartment. Additionally, the

shinySIR package is used to vary the values of βa, βu, δ, and α using sliders [10].

3.2.1 Model Validation

To create these simulations we use shinySIR to plot a figure that updates as parameter slider

values are adjusted. A screenshot of an example shinySIR output is shown in Figure 3.2.

Beyond changing parameter values, model conditions can also be adjusted. For example the
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number of time points for integration and the parameter maximum and minimum values can

be set to specific values.

Figure 3.2: Example shinySIR Output
Parameter sliders on the left and graph on the right. Compartment labels are shown on the
far right with differing colors. As parameter sliders are changed the graph will update in

real-time.

To demonstrate our methods on known data, we recreated Figure 3.3A with our algo-

rithms to replicate Sulsky’s analysis of the second wave of the plague in Eyam, England [11].

Originally proposed by Raggett, Sulsky’s work graphs the SIR model. In his original paper,

Raggett determines α = 2.82 (months−1) and β = α
159

(people ×months)−1 as the recovery

and infection rates respectively. The initial conditions for the second wave of the Eyam

epidemic were S0 = 254 people, I0 = 7 people, and R0 = 0 people. For our simulations using

the Eyam data, as shown in Figure 3.3 we use the unaware group as the overall population,

setting the shinySIR initial conditions so that there are no susceptible or infected individuals

in the aware group.
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Figure 3.3: Eyam Second Wave Predictions
Figure 3.3A shows Sulksy’s plot of the SIR model, solid lines, compared to data from
Rector Mompesson’s historical records, open circles as given in [11]. Figure 3.3B shows

shinySIR recreation of Sulsky’s plot using the unaware group as a proxy, not including the
data points from Mompesson’s historic records.

3.2.2 Time Scaling in the Model Simulations

Before testing the model via parameter analysis, we converted the time scale to daily incre-

ments. By converting our time scale we showed that the model can be used to simulate a

variety of simulations on differing time scales including days, weeks, months, and years. In

Raggett and Sulsky’s Eyam models, parameters were determined using 31 day increments as

shown in Figure 3.3A and B. Because of the original scaling where one increment equals 31

days, to change the increment to 1 day, we divided all of our rate parameters by 31. This gave

us new parameter values of β = 0.00057 (people × day)−1 per individual and α = 0.09097

day−1. We note that the resulting graph in Figure 3.4, where the model is simulated for 500

days looks almost identical to Figure 3.3A which uses months as the increment. Because of

the shorter increments between integration steps, Figure 3.4 appears smoother than 3.3B.

However, the final values for S, I, and R compartments match across both time scales.
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Figure 3.4: Behavioral SIR Model with Time in Days
Using modified Eyam parameters (β = 0.00057 (people× day)−1 per individual and

α = 0.09097 day−1).



Chapter 4

Results and Discussion

After developing the computer algorithms to solve our system, we began simulating cases

with different βa and βu values. As described previously, we interpret βa > βu as a situation

where the information is harmful. Conversely, when βa < βu, we interpret the scenario as

one where knowing the information is helpful.

In our analysis and for all of our simulations, the initial conditions remain fixed while

we manipulate the specific parameter values. The initial conditions, in number of people,

adopted from Ragget’s Eyam model are as follows:

Sa(0) = Su(0) = 254

Ia(0) = Iu(0) = 7

Ra(0) = Ru(0) = 0.

In our initial experiments we hold βa, βu, and α constant while δ is varied to better under-

stand the impact of sharing information on disease transmission. The values for βa, βu, and

α are provided in the description of each testing scenario.

29
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4.1 The Effects of Good Information

Recall that good or helpful information is information that leads to behavior that decreases

disease transmission amongst aware individuals. Prior to testing the model, we hypothesize

that good information will help reduce the intensity of disease outbreaks. We define a

reduction of disease intensity as when fewer individuals in the aware group are infected than

the unaware. In our testing we use parameter values βu = 0.00057 (people × day)−1 and

βa = 1
2
βu (people × day)−1 where βu is the Eyam plague infection rate in days, and βa is

one half of that value. We use this relationship between β values to simulate an imagined

plague that is half as transmissible as the one observed in Eyam. Choosing βa = 1
2
βu

(people× day)−1 was an arbitrary choice and in later sections we explore choosing different

relationships between βa and βu.

4.1.1 Disease Transmission Without Sharing Good Information

When there is no sharing of information, we observe what occurs when good information

is present in one group but not shared between groups, and our model is reduced to two

decoupled SIR models with no movement of individuals between them. For the unaware

group the spread of disease, as shown in Figure 4.1, gives the same results as Sulsky’s data in

Figure 3.3A. The graphs are identical because there is no information being shared between

the aware and unaware groups. In our unaware group we have a small initial outbreak, but

no long-term disease transmission lasting greater than 365 days. Overall, in Figure 4.1 we

note a large increase in the number of unaware infected individuals near the start of our

simulation. Therefore, most people who became infected are from the unaware group. The

outbreak peak for the unaware population was at day 44 when 27 individuals were infected.

On the other hand, the aware population had its peak at day 0 when 7 individuals were

infected. In total, 178 unaware individuals and 29 aware individuals were infected over the

course of 500 days. Note that the disease was no longer transmissible after approximately
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150 days when the total number of infected individuals across both aware and unaware

groups reached 0. As hypothesized, the final number of susceptible, infected, and recovered

individuals from the unaware population matched the final values from Sulsky and Raggett’s

Eyam model as there was no information being shared.

Figure 4.1: Spread of Disease with no Good Information being Shared
In this simulation we model the presence of good information where βa < βu but

information is not shared, hence δ = 0.

4.1.2 Disease Transmission With Sharing Good Information

To test the effect of sharing information we introduce δ ̸= 0. The parameter δ represents the

rate that individuals move from Su to Sa as they share information and move from unaware

to aware. Once again we set βu = 0.00057 (people× day)−1 and βa =
1
2
βu (people× day)−1

the results are shown in Figure 4.1. Overall, when good information is shared, most people

who become infected are unaware as seen in the large increase of Iu individuals near the

start of the simulation. However, people quickly moved from the unaware group to the

aware group as shown in the rapid decrease of Su. Note that some of the decrease in Su can

be attributed to individuals becoming infected. The outbreak peak for the unaware group

shifted from day 44 in the previous simulation to day 14, representing the quick sharing of
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information in the population. However, the outbreak peak for the aware group occurred at

day 103. On day 14 the maximum number of infected individuals was 10 for the unaware

group and on day 103 there were 27 infected individuals in the aware group. The delay in

an aware group outbreak is likely due to a lag in disease infection as individuals first must

move from the unaware to aware group then become infected with the disease. In total, 316

individuals were infected with the disease, 282 of which were from the aware group and 34

from the unaware group.

Figure 4.2: Spread of Disease with Good Information being Shared
In these simulations we model the presence of good information, βa < βu and the sharing of

information, δ = 0.0001 (people× day)−1.

4.1.3 Conclusions

The infection pattern with the sharing of good information versus the pattern without shar-

ing information shows a dampened infection curve. While ultimately more people were

infected when information transmission was introduced, the lag period (day 0 - 103) in in-

fection might serve as a crucial time to increase public health measures and develop vaccine

strategies. Although the introduction of good information was not enough to decrease the

overall number of infected individuals, our results are still useful when considering the bi-
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ological and epidemiological interpretation. Particularly, we see that the introduction of

information results in an earlier disease outbreak amongst unaware individuals, emphasizing

the importance of information campaigns in slowing the spread of a disease. Additionally,

the delay in disease outbreak within the aware group could potentially be further time to

spread useful information. In a later section we will further explore the idea of dampening

the infection curve via β or infection rate analysis.

4.2 The Effects of Bad Information

Bad or harmful information, as defined previously is information that causes a specific behav-

ior that increases the disease transmission rate amongst aware individuals such that βu < βa.

We hypothesize that bad information will increase the number of overall infected individuals

and for our testing we use βa = 0.00057 (people × day)−1 and βu = 1
2
βa (people × day)−1.

In summary, this section aims to understand the influence of bad information on disease

transmission.

4.2.1 Disease Transmission Without Sharing Bad Information

Again, when there is no sharing of information, our model is reduced to two decoupled SIR

models as discussed in Section 4.1.1. As expected our results match the scenario with good

information and no sharing of information, but with the aware and unaware groups swapped

as shown in Figure 4.4. Thus, the unaware group has a smaller number of total infected

individuals than the aware, which matches Raggett and Sulsky’s Eyam values.



RESULTS AND DISCUSSION 34

Figure 4.3: Spread of Disease with no Bad Information being Shared
In these simulations we model the presence of bad information, βa > βu and the sharing of

information, δ = 0.

4.2.2 Disease Transmission With Sharing Bad Information

To determine the effect of sharing bad information on disease transmission, we again intro-

duce δ ̸= 0. This allows individuals to flow from Su to Sa as they share the bad information

which increases disease transmission. To show this increase in transmission, we again set

βa = 0.00057 (people× day)−1 and βu = 1
2
βa (people× day)−1.

When bad information is introduced, the unaware group infection peaks at day 0 while

the aware group’s infection peaks at day 42. In total, 419 individuals were infected, 405

from the aware group and 14 from the unaware group. Unlike the effect of good information,

bad information not only spreads through the population quickly but also causes a more

immediate outbreak compared to good information, which peaked at day 103.

4.2.3 Conclusions

Again translating our results from numerical values to biological and epidemiological con-

cepts, when bad information exists and is shared, we observe a sharp outbreak of the disease
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Figure 4.4: Spread of Disease with Bad Information being Shared
In these simulations we model the presence of bad information, βa > βu and the sharing of

information, δ = 0.0001 (people× day)−1.

within a short period of time. Comparisons of outbreak peaks from the four modeled sce-

narios are shown below in Table 4.1. Because of the lack of a lag period in the Ia curve

at day 42 as seen in Figure 4.2, we deduce that bad information is far more harmful than

good information is benefical. When bad information is introduced, the number of total

infected individuals aware and unaware is over 100 more than the sum of infections in our

good information simulation. Beyond the greater number of overall infected individuals, we

also observe that the maximum number of individuals infected at the peak of the outbreak

increased from 27 when good information is shared to 99 in the bad information simulation.

In general, these simulations suggest that the effect of bad information is more pronounced

than the benefit of good information. As we see in Table 4.1, bad information not only causes

more people to become infected but also a faster outbreak of infection. These results suggest

that mitigating bad information should be prioritized to decrease the outbreak magnitude

caused by bad information. We explore the effect of good information more thoroughly

below.
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Group Information Type δ (people× day)−1 Infection peak Total infected
Aware Good 0 day 0 29 people

Unaware Good 0 day 44 178 people
Aware Good 0.0001 day 103 282 people

Unaware Good 0.0001 day 14 34 people
Aware Bad 0 day 44 178 people

Unaware Bad 0 day 0 29 people
Aware Bad 0.0001 day 42 405 people

Unaware Bad 0.0001 day 0 14 people

Table 4.1: Infection peak summary

4.3 Effects of Good Information on Infectiousness

As previously discussed even when good information is introduced in the population and

information sharing can occur, we still observe an outbreak in the aware group. This outbreak

leads to a greater total number of infected individuals (Ia+Iu) than if no information sharing

occurred. In this section we aim to explore when good information is “good enough” such

that it prevents an increase in the total number of aware individuals who become infected.

To perform this experiment we look for the values of βa that prevent an outbreak. That is,

we find the values of βa that give Ra < Ru.

Using the ShinySIR model we varied βa, holding all other parameter values constant,

until we observed visible a peak in infection. A visible peak in infection means that Ia

has a visible increase followed by a decrease. We then used the βa value that generated

this plot in our model to determine final values for Ra and Ru. In doing so we found

Ra < Ru when βa ≤ 0.00017 (people×day)−1. In comparison our base βu value was 0.00057

(people× day)−1. So βa needs to be approximately 1
3
βu to prevent an outbreak in the aware

group. Using βa = 0.00017 (people × day)−1 and βu = 0.00057 (people × day)−1, the final

number of infected individuals for the aware and unaware groups were Ra = 27 and Ru = 34.

In our studies, good information, is a slight misnomer as the introduction of any informa-

tion regardless of its type increases the total number of infected individuals as seen in Table

4.1 where when δ = 0 the total number of infected individuals was 207 and when δ = 0.0001
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Figure 4.5: “Good enough” Information
In this simulation we model when good information is “good enough”. We find that
βa = 0.00017 (people× day)−1 and βu = 0.00057 (people× day)−1 for Ra < Ru.

the total number of infected individuals increased to 316 with the introduction of good in-

formation and 419 with bad information. However, when we further examine the impact of

good information, we see that in fact, information simply needs to be “good enough” to stop

an outbreak. Simply put, information that reduces the disease infection rate by 1
2
does not

do enough good to fully reduce the total number of infected individuals. Instead, we have

shown that for our specific set of parameters, good information needs to reduce the infection

rate by approximately 1
3
to dampen the infection curve.

From a public health and epidemiological perspective, decreasing the infection rate of a

disease is not impossible and can be done through the implementation of messaging, personal

protective equipment, social distancing, among other strategies. Depending on the disease

that is present within the population, different recommendations can be made. For example,

in the recent COVID-19 pandemic, the Centers for Disease Control (CDC) recommended

that individuals wear face masks to decrease aerosol spray and spread of COVID-19 [12].

The use of personal protective equipment can be incredibly useful in decreasing disease

transmission, and this model provides a useful tool to understand the threshold of disease
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transmission to stop an outbreak.



Chapter 5

Conclusion

In this thesis we have developed a six compartment model of disesae transmission and in-

formation sharing to analyze the effect of human behavior on disease transmission. Current

mathematical models of disease often assume a homogeneous population with population

parameters that apply to every individual regardless of their beliefs. Our findings suggest

that separating the population by knowledge, shows that when good information exists, the

information has to be “good enough” at lowering the disease transmission rate to prevent a

severe outbreak. Conversely, bad information is incredibly powerful such that an outbreak

is likely to occur when bad information is present and shared throughout the community.

These findings indicate that while both good and bad information are essential to monitor in

the context of disease management, greater attention should be focused on misinformation

and harmful information that increases disease transmission.

5.1 Model Limitations

A key limitation in our analyses is that the parameters used within our experiments come

from the 1666 Eyam second wave plague outbreak. Although the plague is still present in

communities today, most notably Madagascar, public health measures and medical advance-

ments have reduced the transmission of the disease. Instead, these parameters could be

39
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altered specifically for another highly contagious disease that spreads quickly throughout a

population.

An underlying assumption of the model is that when individuals are presented with

information, they act on that information. However, this is not always the case as individuals

will often be presented with both good and bad information and fail to act on the information

they receive. Thus, a more appropriate interpretation of the scenarios modeled might be the

spread of action or behavior rather than information.

5.2 Future Work

In the future to continue expanding this work, a model featuring separate recovery rate

parameters for aware and unaware groups could be developed. This model could be used for

scenarios where the information not only effects disease transmission but also recovery. As

shown in Section 1.4.1 births and deaths can also be incorporated or other variations of the

classic SIR model could also be considered.

Additionally, information sharing could be expanded beyond only susceptible individuals.

Allowing infected and recovered individuals to share information would describe a scenario in

which individuals are able to contact one another regardless of disease status. Combined with

differing recovery parameters this would also allow for individuals who are in the unaware

infected class to move to the aware recovered class if they became aware of the information

while infected.



Appendix A

Behavior Model Code

Analyses from the behavior six compartment model are described in Chapter 4. For all tests

the parameter initial conditions were changed as described and results were recorded. In

some instances, interesting changes in the final resulting figure were further explored using

the shinySIR model for faster changes in parameter values.

First, we define our model’s variables and parameters.

DensityDepSIR <− function ( t , x , params ){

# Args :

# t : v e c t o r o f time po in t s in the i n t e g r a t i o n

# x : v ec t o r o f v a r i a b l e s in the d i f f e r e n t i a l equa t ion

# params : v ec t o r o f parameter va l u e s

#

# Returns :

# The ra t e o f change o f the v a r i a b l e s S a , I a , R a , S u , I u ,

# and R u .

# Where a = aware and u = unaware

# Local Var iab l e s
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S a <− x [ 1 ]

I a <− x [ 2 ]

R a <− x [ 3 ]

S u <− x [ 4 ]

I u <− x [ 5 ]

R u <− x [ 6 ]

# Local parameters

beta a <− params [ 1 ]

beta u <− params [ 2 ]

d e l t a <− params [ 3 ]

alpha <− params [ 4 ]

with (

as . l i s t ( params ) ,

{

# Equations

dS a <− −beta a ∗ (S a ∗ I a ) + de l t a ∗ (S u ∗ S a )

dI a <− beta a ∗ (S a ∗ I a ) + (−alpha ∗ I a )

dR a <− alpha ∗ I a

dS u <− −beta u ∗ (S u ∗ I u) − de l t a ∗ (S u ∗ S a )

dI u <− beta u ∗ (S u ∗ I u) + (−alpha ∗ I u)

dR u <− alpha ∗ I u

dx <− c (dS a , dI a , dR a , dS u , dI u , dR u)

# combine r e s u l t s i n t o a s i n g l e v ec t o r dx

l i s t ( dx ) #return r e s u l t as a l i s t ,
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}

)

}

Then we initialize our variables including integration points, initial conditions, and parameter

values.

# time po in t s f o r the i n t e g r a t i o n in days

tmin <− 0

tmax <− 500

t . SIR <−seq ( tmin , tmax ,by=1)

# I n i t i a l c ond i t i on s f o r S , I ,R aware and unaware

x s t a r t<− as .numeric (c (S a=254 , I a=7, R a=0, S u=254 ,

I u=7, R u=0))

# parameter va l u e s

# transformed from Ragget t paper , 1 time un i t = 31 days

SIRparameters <− c (beta a=(0.0002) , beta u=(((2 .82/159))/31) ,

d e l t a =0.0001 , alpha =(2.82/31))

Finally, we run our model. This code outputs a figure displaying the change in population

size per compartment. Additionally, a table comprising the final values and maximum value

for each compartment is generated.

DensityDepSIR ( t . s i r , x s ta r t , SIRparameters )

# simu la t e an outbreak

SIRsim <− as . data . frame ( l soda (y = xstar t , t imes = t . SIR ,

func = DensityDepSIR , parms = SIRparameters ) )
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# Plot SIR

SIRsim %>%

gather ( key = state , va lue = value , ”1” : ”6” ) %>%

ggplot (data = . , aes (time , value , c o l o r = s t a t e ) ) +

geom l i n e ( ) + labs (y = ”Number o f people ” )

#crea t e a t a b l e wi th f i n a l v a l u e s

labels <− c ( ”S a” , ” I a” , ”R a” , ”S u” , ” I u” , ”R u” )

va l s <− c ( SIRsim [ tmax , 2 ] , SIRsim [ tmax , 3 ] , SIRsim [ tmax , 4 ] ,

SIRsim [ tmax , 5 ] , SIRsim [ tmax , 6 ] , SIRsim [ tmax , 7 ] )

f i n a l va l s <− round( va l s , 2)

max va l s <− c (max( SIRsim [ , 2 ] ) , max( SIRsim [ , 3 ] ) , max( SIRsim [ , 4 ] ) ,

max( SIRsim [ , 5 ] ) , max( SIRsim [ , 6 ] ) , max( SIRsim [ , 7 ] ) )

f i n a l va l s <− data . frame ( labels , f i n a l va l s , max va l s )

print ( f i n a l va l s )



Appendix B

shinySIR Model Code

To generate a shinySIR output with sliders for each variable, we first define a new function,

mySIRS containing our necessary equations.

mySIRS <− function ( t , y , parms ) {

with ( as . l i s t (c (y , parms ) ) ,{

# Equations

dS a <− −beta a ∗ (S a ∗ I a ) + de l t a ∗ (S u ∗ S a )

dI a <− beta a ∗ (S a ∗ I a ) + (−alpha ∗ I a )

dR a <− alpha ∗ I a

dS u <− −beta u ∗ (S u ∗ I u) − de l t a ∗ (S u ∗ S a )

dI u <− beta u ∗ (S u ∗ I u) + (−alpha ∗ I u)

dR u <− alpha ∗ I u

return ( l i s t (c (dS a , dI a , dR a , dS u , dI u , dR u ) ) )

})
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}

We then initialize all of our variables and parameters. Additionally, we name all of our

variables.

# t=0 s t a r t i n g va l u e s

x s t a r t<− c (S a=254 , I a=7, R a=0, S u=254 , I u=7, R u=0)

SIRparameters <− c (beta a=0, beta u=2.82/159 , d e l t a =0.000 ,

alpha =(2 .82))

parameter names <− c ( ” I n f e c t i o n ( aware ) ” , ” I n f e c t i o n ( unaware ) ” ,

”Rate o f In format ion Spread” , ”Recovery Rate”

Finally, we create the shinySIR model that is outputted from the following code chunk.

run shiny (model = ”BM SIR” ,

neweqns = mySIRS ,

i c s = xstar t ,

t imestep = 1 ,

tmax = 10 ,

parm0 = SIRparameters ,

parm names = parameter names ,

x l ab e l = ”Time in 31 day increments ” ,

parm min = c (beta a=0, beta u=0, de l t a =0, alpha=0) ,

parm max = c (beta a=1, beta u=1, de l t a =1, alpha=5) ,

s l i d e r s t ep s = c (beta a=0.00001 , beta u=0.00001 ,

d e l t a =0.00001 , alpha =0.00001))
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